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Resumé(Rest of the project is in English)
En standard kvante-optisk behandling af ”electromagnetically induced transparency” i et
lambda system er blevet udført og vigtige teknikker indenfor AMO-fysik blev præsen-
teret. Dette inkluderer ”the rotating frame”, ”the rotating wave approximation”, ”the
density operator” og ”the Master equation”. Herefter blev en analytisk løsning af lambda-
EIT systemet fundet i den statiske grænse. En numerisk beregning af systemets dy-
namik(tidsafhængighed) blev ogs̊a fundet og denne stemte overens med den statiske løsning
efter t/γ ≈ 20.
I anden del af projektet bliver elektromagnetisme inden for kvantefeltteori præsenteret i
form af QED. Herefter præsenteres et muligt Lagrange led for dipol-vekselvirkning mellem
fermioniske atomer og det elektromagnetiske felt. Det vises at dette led reducerer til den nor-
male dipol interaktion fra kvantemekanik i den ikke-relativistiske grænse. Rydberg polari-
tons blev behandlet som masse-egentilstandene af den kvadratiske Hamiltonian for ”ladder
EIT” systemet. Vekselvirkningen mellem Rydberg polaritons blev beskrevet ved et quartic
led. Resulterende Feynman diagrammer blev præsenteret og Bethe-Salpeter ligningen for
vekselvirkningen blev udledt. Det blev vist, at i den korrekte grænse opfører systemet sig
som en enkelt partikel der propagerer i et effektivt potentiale.
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1 Introduction

The phenomenon of electromagnetically induced transparency(EIT) happens when a medium
becomes transparent for a probe field(typically lasers) after a control field changes the be-
haviour of the medium through an interference effect. EIT has been successfully modelled
by standard methods in quantum optics [5]. So has the interactions between highly excited
Rydberg atoms and its possible uses in quantum information [11]. Recently, a combina-
tion of the Rydberg interactions and slow light in the EIT setup [8] has been studied as
a method of photon-photon interaction [10] [6] [9] and has promising uses in quantum in-
formation. Quantum field theory(QFT) approaches to describe these phenomena has been
developed [2] [3] [7]. This motivates collaboration between high energy physicists who
are experienced in such theory and quantum optics physicists who understand the phys-
ical systems and experiments. This project is meant to bridge the gap between the two
communities1. The first part introduces the very basics of quantum optics in a review of
standard EIT, and the second part is a naive approach to make a field theory for the Ry-
dberg polaritons. It is heavily inspired by [2] and [3], but derived from more fundamental
principles.

1Especially between the two collaborating groups Nonlinear Quantum Optics group and CP3 Origins at
SDU.
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Part I

Standard Electromagnetically Induced
Transparency

A typical EIT setup uses two near resonant lasers that facilitate transitions between three
states in an atom. Figure 1 shows the energy levels and laser frequencies.

Figure 1: λ-type EIT setup

2 Bare Atom

When considering the bare atom without lasers, the system consists of an atom where only
3 states are relevant; two so called ground states: |1〉 & |2〉 and an exited state |3〉. We
describe these energy levels by their resonant frequencies, such that the Hamiltonian for
the atom becomes:

HA = h̄(ω13 − ω23) |2〉 〈2|+ h̄ω13 |3〉 〈3| (2.1)

3 Laser Fields & Interaction

We turn on two laser fields(electromagnetic fields). We only care about the fields at a single
point, so we do not describe their spacial dependence and their spacial frequency ki. Letting
ε̂i describe their direction and polarization, the fields are given by:

~E(~r, t) = ε̂1E1 cos(−ωpt) + ε̂2E2 cos(−ωct) (3.1)
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These fields effectively adds an atom-field interaction term HAF to the Hamiltonian of the
atom, such that the total Hamiltonian becomes:

H = HA +HAF (3.2)

This interaction is described through the dipole moment:

HAF = −d̂ ~E (3.3)

Where the dipole moment operator is given by

d̂ = qr̂ (3.4)

To calculate (3.3), we decompose the electric fields into ”positively rotating” and ”negatively
rotating” parts Ê = Ê(+) + Ê(−). Where:

~E(±) =
1

2
(ε̂1E1e

−i(±ωpt) + ε̂2E2e
−i(±ωct)) (3.5)

Similarly we want to decompose d̂. Expanding the operator by applying 1 = (|1〉 〈1| +
|2〉 〈2|)+|3〉 〈3|)) on both sides and assuming that states do not have any dipole by themselves
and that |2〉 → |1〉 is not dipole-allowed, we get:

d̂ = |1〉 〈1| d̂ |3〉 〈3|+ |2〉 〈2| d̂ |3〉 〈3|+H.c. (3.6)

Choosing phase of the dipole operator such that 〈i| d̂ |j〉 is real, and defining operator
σij = |i〉 〈j| we get:

d̂ = 〈1| d̂ |3〉 (σ13 + σ31) + 〈2| d̂ |3〉 (σ23 + σ32) (3.7)

σ13 and σ23 are proportional to e−iω13 and e−iω23 while σ31 and σ32 are proportional to eiω13

and eiω23 (explained in section 6.1). Naming the positively rotating terms d̂(+) and the
negatively rotating d̂(−) we can compute HAF by letting the decomposed dipole operator
act on the decomposed fields:

HAF = −(d̂(+) + d̂(−)) ( ~E(+) + ~E(−)) ≈ −d̂(+) ~E(−) − d̂(−) ~E(+) (3.8)

The Rotating Wave Approximation(RWA) is performed, such that the terms that oscillate
with double frequency is discarded( d̂(+) ~E(+) − d̂(−) ~E(−)). This is reasonable because we
are not interested in physics that occurs at these time scales. Instead only the cross terms
survive.

Defining the Rabi couplings/ Rabi frequencies for the two fields:

Ωp = −E1

h̄
〈1| ε̂1 · d̂ |3〉 (3.9)
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Ωc = −E2

h̄
〈2| ε̂2 · d̂ |3〉 (3.10)

And assuming that the energy levels spaced such that the fields only couple their respective
transitions, we can write the interaction term in the RWA as:

HAF =
h̄Ωp

2
(σ13e

−iωpt + σ31e
iωpt) +

h̄Ωc

2
(σ23e

−iωct + σ23e
iωct) (3.11)

So now the total hamiltonian becomes:

H = HA +HAF = h̄

 0 0
Ωp
2 e
−iωpt

0 ω13 − ω23
Ωc
2 e
−iωct

Ωp
2 e

iωpt Ωc
2 e

iωct ω13

 (3.12)

4 Rotating Frame

To simplify calculations, we will transform to a different basis. Before transformation, the
Hamiltonian was defined on the state vector ψ, which consists of the coefficients on the
eigenvectors needed to produce the given state |ψ〉

ψ =

c1(t)
c2(t)
c3(t)

 (4.1)

|ψ〉 = c1(t) |1〉+ c2(t) |2〉+ c3(t) |3〉 (4.2)

We now transform to the new basis, where two of the coefficients’ phases rotate with time.
Elements in the new basis is indicated by ˜.

ψ̃ =

c1(t)
c̃2(t)
c̃3(t)

 (4.3)

˜|ψ〉 = c1(t) |1〉+ c̃2(t)ei(ωp−ωc)t |2〉 c̃3(t)eiωpt |3〉 (4.4)

This new basis is called the ”Rotating Frame” or ”the interaction picture”. This transfor-
mation is facilitated by the unitary transformation matrix U:

U =

1 0 0

0 ei(ωp−ωct) 0
0 0 eiωpt

 (4.5)
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When doing a time dependent change of basis, one needs to transform the Hamiltonian,
such that it still satisfies the Schrödinger equation. If the transformation U is unitary, the
new Hamiltonian H̃ is easily computed [12]:

H̃ = UHU † + ih̄(∂tU)U † (4.6)

Computing the total Hamiltonian in the Rotating Frame yields:

H̃ = h̄

 0 0
Ωp
2

0 (ω13 − ωp)− (ω23 − ωp) Ωc
2

Ωp
2

Ωc
2 ω1 − ωp

 = h̄

 0 0
Ωp
2

0 ∆p + ∆c
Ωc
2

Ωp
2

Ωc
2 ∆1

 (4.7)

Remember that ωp & ωc represents the experimental values of the lasers, while ω13 & ω23

represents the actual differences in energylevels in the atom. We therefore call ∆p = ωp−ω13

& ∆c = ωc − ω23 the detunings of the system.

5 Eigenstates of Interaction Hamiltonian

The next step in many standard quantum mechanics problems would be finding the eigen-
states of the system(ie diagonalizing the Hamiltonian). This is also possible for this system
and leads to a very phenomenological understanding. This is not as useful and I will there-
fore just briefly introduce it. The simplest way to describe the eigenstates of the new
Hamiltonian is using the ”angles” φ & θ:

tan θ =
Ωp

Ωc
(5.1)

tan 2φ =

√
Ω2
p + Ω2

c

∆p
(5.2)

When ∆p = ∆c, the eigenstates are given by

|0〉 = cos θ |1〉 − sin θ |2〉 (5.3)

|+〉 = sin θ sinφ |1〉+ cosφ |3〉+ cos θ sinφ |2〉 (5.4)

|−〉 = sin θ cosφ |1〉 − sinφ |3〉+ cos θ cosφ |2〉 (5.5)

The interesting point is now that the |0〉 state does not have any contribution from |3〉. This
means that there is no possibility of spontaneous decay and thus scattering of the field and
the medium becomes transparent. This offers a phenomenological explanation of EIT. But
if one wants a more rigorous and useful description, the answer is to work with the density
operator.
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6 Density Operator Method

An often used method in AMO-physics(Atomic & Molecular Optics) is the density operator
formalism. It uses the density operator ρ̂. In a system where each point has the probabilities
Pα of being prepared in the quantum states |ψα〉, the density operator is mathematically
described by

ρ̂ =
∑
α

Pα |ψα〉 〈ψα| (6.1)

If there is a state such that Pα = 1, then the system is said to be pure. If not then the system
is called mixed, and is a statistical mixture of quantum states. In our case Pα will always
be unity. The density operator holds all the usual information about the state. Given the
density operator for a state, one can compute the expectation value of an operator A using
the trace:

〈A〉 = 〈ψ|A |ψ〉 (6.2)

=
∑
α

Pα 〈α|A |α〉 (6.3)

=
∑
α,n

Pα 〈α|A |n〉 〈n|α〉 (6.4)

=
∑
α,n

〈n|α〉Pα 〈α|A |n〉 (6.5)

=
∑
n

〈n|
∑
α

Pα |α〉 〈α|A |n〉 (6.6)

=
∑
n

〈n| ρA |n〉 (6.7)

= Tr[Aρ] (6.8)

As no assumptions were made of the orthonormal basis |n〉, the trace can be done with
respect to any such basis.

6.1 Density Matrix and Coherences

Given an orthonormal basis, the density operator can be represented by a matrix(the density
matrix). If |n〉 and |n′〉 are basis vectors of this basis, the entries of the density matrix are
given by:

ρnn′ = 〈n| ρ̂
∣∣n′〉 (6.9)

The diagonal elements are easily interpreted. These are the probability that the system
described by ρ are in the state |n〉:

ρnn = 〈n|
∑
α

Pα |α〉 〈α|n〉 =
∑
α

Pα| 〈n|α〉 |2 = Pn (6.10)
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Thus the diagonal elements satisfies unity of probability:∑
n

ρnn = 1 (6.11)

The off diagonal elements are harder to interpret. These describe the so called ”coherences”
of the system. Naively, one would think that we have simply chosen a bad basis, since the
matrix is hermitian and thus can be diagonalized. This is true, but given the right basis,
the diagonal entries can have insightful meaning. If one chooses the basis to be the states of
the bare atom, the diagonal entries are related to transitions between states. Particularly
an off diagonal element (e.g.ρ13) is closely related to the dipole moment for that transition:

ˆdprobe = 〈1| d̂ |3〉 (σ13 + σ31) (6.12)〈
ˆdprobe

〉
= Tr

(
ˆdprobeρ

)
= µ13(ρ13 + ρ31) (6.13)

Where µij = 〈1| d̂ |3〉 is the transition dipole-moment, which usually is measured experimen-
tally(it is possible to calculate for simple atoms and roughly estimate for more complicated
ones).
This is a very relevant quantity when modelling the propagation of light.

7 Propagation of Light

Given the off-diagonal elements of a density matrix for a medium consisting of N atoms
with identical density matrix in the volume V, one can compute the dipole moment for each
atom. From this, one can compute the polarization of the medium:

P =
∑
i

〈
d̂
〉
i

V
=
N

V
(µ13ρ13 + µ23ρ23 + c.c.) (7.1)

We are only interested in the polarization related to the probe. Using (7.1) and only
including the term with ρ13 we get the positively rotating polarization related to the probe
transition:

P
(+)
probe = Nµ31ρ31 (7.2)

Assuming that we are in the linear regime, the susceptibility is defined as:

P
(+) = Nµ13ρ31 = ε0χprobeE

(+) (7.3)

Using our definition of the Rabi-frequency we get Eprobe = ω13h̄/µ31 and the susceptibility
becomes:

χprobe =
Nµ2

13

ε0h̄

2ρ31

Ωp
(7.4)

This susceptibility holds almost all the information about the propagation of light in the
medium. To see this we start with Mawell’s equations:
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7.1 Giving Meaning to the Susceptibility χ

Classically two of Maxwells equations describe light propagation:

∇× E = −∂tB (7.5)

∇×B =
1

c2
∂t(E +

1

ε0
P ) (7.6)

Where P is the polarization of the medium. In AMO physics we often do the Slowly Varying
Envelope Approximation(SVEA), where we assume that the electric field and polarization
are of the form2:

E(r, t) = E(r, t)ei
~kz−i~νt + c.c (7.7)

P (r, t) = P(r, t)ei
~kz−i~νt + c.c (7.8)

Where E &P vary slowly in r& t. From this, the SVEA propagation equation can be
derived:

1

2ik
(∂x + ∂y)E(r, t) + ∂zE(r, t) =

ik

2ε0
P(r, t) (7.9)

Assuming the medium responds linearly(P = ε0χE) we get:

1

2ik
(∂x + ∂y)E(r, t) + ∂zE(r, t) =

ik

2
χE(r, t) (7.10)

Doing a Fourier transform from time to frequency-space we get the following equation for
the envelope in frequency space(E(ν)):

∂E
∂z

=
iν

c
E(ν) +

i~k

2
χ(ν)E (7.11)

Which is easy to solve:

E(ν, z) = E(ν, 0)ei(νz/c+
~kχ(ν)) (7.12)

To get the solution in time-space, we transform back:

E(t, z) =

∫ ∞
−∞

dν e−iνtE(ν, 0)ei(νz/c+
~kχ(ν)) (7.13)

For monochromatic light with frequency ν0 the envelope is E(ν) ∝ δ(ν − ν0). For this, we
get the solution

E(t, z) = Eei~kχ(ν0)z/2 (7.14)

= Ee~k[Im(χ(ν0))+iRe(χ(ν0))]z/2 (7.15)

2If the light is not monochromatic the generalization (for E)is
∑
n E(r, t)e

i~kz−i~νt + c.c.
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From this we see that the imaginary part of χ(ν0) results in a change of the amplitude of
the field. With the correct sign, we can thus relate the imaginary part of susceptibility to
Transmission T

T = eIm(χ) (7.16)

The real part effectively adds a phase shift to the field, which can be described by a change
in the spacial frequency:

~k → ~k + ~k
Re(χ)

2
(7.17)

8 Time Evolution and The Master Equation

For the usual state vector |ψ〉, the time evolution is described by the Schrödinger equa-
tion. An equivalent equation for the density operator can be derived from the Schrödinger
equation:

∂tρ = − i
h̄

[H, ρ] (8.1)

This is the direct analogue to the Schrödinger equation. To envelop the effect of an envi-
ronment on the states, one can use the so called ”master equation”. The master equation
for a system interacting with a reservoir is given by [12]:

∂tρ(t) = − i
h̄

[
HS +HSR, ρ(t)

]
+
∑
α

kαD[Sα, ρ(t)] (8.2)

HSR describes interaction between system and reservoir. The summation at the end pri-
marily describes experimental ”decoherences”, which destroy the coherences represented by
the off-diagonal elements in the density operator. In the our system, the master equation
becomes:

∂tρ = − i
h̄

[HA +HAF , ρ(t)] + Γ31D[σ31] + Γ32D[σ32] + γ3D[σ33] + γ2D[σ22] (8.3)

The first term includes the total Hamiltonian already computed in (4.7). The 2nd and 3rd
terms describes spontaneous decay from |3〉 → |1〉 and |3〉 → |2〉 respectively. The coefficient
Γi is the strength of this decay. The last two terms describe the dephasing which removes
coherences(off-diagonal elements in ρ) of the state.
All these terms are computed using the Lindblad super operator D which is defined as:

D[c, ρ] = cρc† − 1

2
[c†cρ+ ρc†c] (8.4)

We have now described an equation that governs the evolution of the physical system.
This can be solved numerically for time evolution. Furthermore, it is possible to solve the
stationary case symbolically.
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9 Stationary Solution

After the EM-fields have been turned on for some time, the system will approximately be
in a stationary equilibrium. Setting ∂tρ(t) = 0 in the left side of the master equation (8.3),
we can solve this case symbolically. Using ρij = ρ∗ji the problem simplifies to a cumbersome
6 equations with 6 variables. Mathematica can solve this as is, but with a few physically
inspired approximations it can be solved neatly by hand.

9.1 Solution by Hand

In the case of a comparably weak probe field(|1〉 − |3〉 coupling), most of the population
will be in the ground state. Since the few atoms that get exited will spontaneously decay
back into the ground state fairly rapidly. Inspired by this, we set ρ11 = 1, ρ22 = ρ33 = 0.
We also relabel the constants that go into the equations to fit the way they appear in the
equations s.t. Γ3 = Γ31 + Γ32, γ31 = Γ3 + γ3, γ32 = Γ3 + γ3 + γ2, γ2 = γ2. With this, the
˙ρ32 equation in (8.3) yields:

˙ρ32 = 0 = Ωpρ12 + i(γ32 − 2i∆c)ρ32 (9.1)

ρ32 =
iΩpρ12

γ32 − 2i∆c
(9.2)

Similarly ˙ρ21 yields:

˙ρ21 = 0 = −iΩcρ13 + iΩpρ32 − (γ2 − 2i(∆c −∆p))ρ12 (9.3)

ρ12 =
−iΩcρ13

γ2 − 2i(∆c −∆p)
(9.4)

Where the term with ρ32 has been removed since inserting (9.2) results in a Ω2
p which is

very small when the probe is weak.
˙ρ31 yields:

˙ρ31 = 0 = Ωp + Ωcρ21 + (γ31 − 2i∆p)ρ31 (9.5)

ρ31 =
−iΩcρ21 + Ωp

γ31 − 2i∆p
(9.6)

ρ31 is found by inserting ρ21 = ρ∗12 from (9.4) and rearranging:

ρ31 =
Ωp(γ2 − 2i(∆p −∆c))

(γ31 − 2i∆p)(γ2 − 2i(∆p −∆c))
(9.7)

The susceptibility for the probe is then calculated using (7.4). With this, the transmission
is computed from (7.16). Using units where γ31 = 1, ∆c = 0, Ωc = 1, Ωp = 0.01 & h̄ = 1,
the transmission and Im[ρ31] is seen in figure 2
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(a) Transmission for γ31 = 1, ∆c = 0, Ωc =
1, & Ωp = 0.01

(b) Susceptibility for Transmission for γ31 =
1, ∆c = 0, Ωc = 1, & Ωp = 0.01

Figure 2: By hand approximation

9.2 Full Stationary Solution

The full stationary equation((8.3) with ∂tρ(t) = 0) is possible to solve symbolically, but is
very cumbersome.DSolve in Mathematica can solve this equation as is. The full solution is
compared to the approximation for Ωp/Ωc = 0.01 in figure 3.

(a) Transmission for Ωp = 0.01. Full blue
is the full solution and dashed orange is the
approximation. The two solutions are indis-
tinguishable.

(b) Susceptibility for Ωp = 0.01. Full blue
is the full solution and dashed orange is the
approximation. The two solutions are indis-
tinguishable.

Figure 3: Comparison at Ωp = 0.01

For increasing Ωp the approximation that Ωp/Ωc � 1 should fail. This is seen in figure 4
for Ωp = 0.01, Ωp = 0.1, Ωp = 2
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(a) Transmission for Ωp =
0.01 Blue is full solution and
orange is approximation

(b) Transmission for Ωp = 0.1
Blue is full solution and or-
ange is approximation

(c) Transmission for Ωp = 0.5
Blue is full solution and or-
ange is approximation

Figure 4: Comparison for increasing Ωp

Experimentally it is a challenge to preserve the coherences. For an experiment with a large
decay of coherences out of |2〉, the EIT effect vanishes. This is shown in figure 5

(a) γ2 = 0.3 (b) γ2 = 2

Figure 5: Transmission for large γ2 decoherence

In the full solution the population of different states(ρii) can also be computed. This is
plotted as a function of detuning ∆p in figure 6. We see that the approximation ρ11 = 1 &
ρ22 = ρ33 = 0 hold for the used values of γ31, ∆c, Ωc, Ωp & h̄ = 1.
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(a) Population of in |1〉(blue) and total pop-
ulation(red)

(b) Population in |2〉 (orange) and |3〉(green)

Figure 6: Populations for different detuning ∆p

Figure 7 shows how the populations approach these values, as we turn on the control field.

Figure 7: Population of |1〉(blue), |2〉(orange), |3〉(green)

10 Full Numerical Solution

The full master equation can be solve numerically to find the time dependence of the system.
The result is shown in figure 8 and 9
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(a) |1〉 (b) |2〉(blue) and |3〉(orange)

Figure 8: Time dependence of populations for Ωc = 1

(a) |1〉 (b) |2〉(blue) and |3〉(orange)

Figure 9: Time dependence of populations for Ωc = 3

For higher Ωc the system initially oscillates faster. These are the so called These are called
Rabi-oscillations. In both cases, the overall dampening is the same, and the system reaches
stability after some tine. So setting ∂tρ = 0 seems like a good approximation.
In figure 10 the time dependence of the imaginary part of ρ31 is plotted. This is proportional
to the susceptibility. Here we also see stability after t ≈ 30 · 1/γ31.
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Figure 10: Time dependence of susceptibility. Blue is time dependent solution and dashed
line is stationary approximation
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Part II

Field Theory for Rydberg Polaritons

Now we move on to the field theory part of this project. We start by introducing the electric
field and dipole interaction in quantum field theory(QFT). Then the EIT setup is treated
with the field theory approach. This time the system will be the ”ladder EIT setup”(figure
11). Finally we model Rydberg polaritons and their interactions.

Figure 11: Ladder setup for EIT
The probe ω couples the Rydberg states |r〉and the exited state |e〉 with detuning δ. The
probe with strength g couples the ground state and the exited state. It is ”detuned” from

the control field by the frequency ck.

11 Electric Field in QFT

In quantum field theory, the electric field is described together with the magnetic field
in quantum electrodynamics, which has the free Lagrangian density(in absence of source
currents):

LEM = −1

4
FµνF

µν (11.1)

Where Einstein summation notation is used 3. Fµν = ∂µAν − ∂νAµ is the field strength
tensor. Where Aµ is vector field of electromagnetism. The components of Fµν are the

3Whenever the same index is present twice in a term, it implies summation over this index. Greek
letters symbolize spacetime quantities and run over {0, 1, 2, 3} = {t, x, y, z}. Latin letters symbolize spacial
quantities and run over {1, 2, 3} = {x, y, z}. In the above equation, summation is implied over µ and ν.
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electric and magnetic fields:

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 (11.2)

To calculate the Hamiltonian related to this Lagrangian, we compute the conjugate mo-
mentum (πµ)to Aµ:

πµ =
∂L
∂Ȧµ

= −F 0µ = (0, Ei) (11.3)

The Hamiltonian can then be computed:

HEM =

∫
d3xπiȦi − L =

∫
d3x

1

2
EiE

i +
1

2
(∇jAi)(∇iAj)−A0(∂iE

i) (11.4)

There is some redundancy in our description of Aµ. It turns out one can choose whatever
∂iA

i(divergence) of the field one wants. This is called Guage-freedom or Guage symmetry.
A convenient choice for our case is Coulomb Guage where we set ∂iA

i = 0 and as a result
A0 = 0 . This removes the last term in (11.4):

HEM =

∫
d3x

1

2
EiEi +

1

2
(∇jAi)(∇iAj) (11.5)

The electric field in QFT is the momentum conjugate to Ai. Ai is the field that satisfies the
free part of the theory and is thus given by a (continuous) sum of momentum eigenstates.

~A = (~x) =

∫
d3p

(2π)3

√
1

2|~p|

2∑
r=1

~εr(~p)
[
ar~p e

ipix
i

+ ar†~p e
−ipixi

]
(11.6)

Where r denotes the polarisations that are present in εr. a
r
~p are the annihilation operators

that removes a particle with momentum ~p. xi labels the position in space. This is given in
the Heisenberg picture where time dependence is included in the operators(like a’s, ~A and
~E). Using (11.3) calculating E from A is a simple time derivative, which will move a |~p|
down. This hints that the Coulomb Guage is not good at expressing Lorentz invariance.
Though this is not a problem in our system, since we will treat it non-relativistically anyway.

~E(~x) =

∫
d3p

(2π)3
(−i)

√
|~p|
2

2∑
r=1

~εr(~p)
[
ar~p e

ipix
i − ar†~p e

−ipixi
]

(11.7)

In experiments only a single polarisation is relevant. This polarisation is picked and the
sum over r disappears. We start by calculating the electric part of the Hamiltonian

1

2

∫
d3x~E · ~E = −1

2

∫
d3x d3p d3q

(2π)6

√
|~p||~q|
2

~ε(~p) · ~ε(~q) (11.8)(
a~pe

ipix
i − a†~pe

−ipixi
)(

a~qe
iqix

i − a†~qe
−iqixi

)
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Assuming the polarizations are identical, ~ε(~p) · ~ε(~q) vanishes. The integral over x3 will
produce delta functions from the exponentials.

= −1

2

∫
d3p d3q

(2π)6

√
|~p||~q|
2

[
a~pa~qδ(~p+ ~q) (11.9)

−a~pa†~qδ(~p− ~q)− a
†
~qa~pδ(−~p+ ~q) + a†~pa

†
~qδ(−~p− ~q)

]
Now we use |~p| = h̄ωp/c and introduce the terms that would originate from the ∇iAj∇jAi
part of the Hamiltonian. These terms would be the same, except that spacial derivatives
were done on the field A so they have the momentum as their coefficients

HEM =
1

4

∫
d3p

(2π)3

1

ωp

[
(−ω2

p + p2)(a†~−pa
†
~q + a~pa ~−p) + (ω2

p + p2)(a†~pa~p + a~pa
†
~p

]
(11.10)

The first terms cancel. ω2
p = p2 is again used. And in the last term, the commutation

relation [a~p, a
†
~p] = (2π)3δ(3)(~p, ~q) is used

HEM =
1

2

∫
d3p

(2π)3
ωp

(
a†~pa~p + a~pa

†
~p

)
(11.11)

=

∫
d3p

(2π)3
ωp

(
a†~pa~p +

1

2
(2π)3δ(3)(0)

)
(11.12)

Where the last term is removed by defining the zero point energy.

HEM =

∫
d3p

(2π)3
ωpa

†
~pa~p (11.13)

In [3] they expand the probe’s frequency as a constant term plus deviations ωp = ω0 + ck
where ck is shown on figure 11. In quantum field theory this could maybe correspond to
transforming a picture where the operators hold the time-dependence related to ω0. In the
rest of this report, we will use the electromagnetic Hamiltonian consistent with [2] and [3]:

HEM =

∫
d3p

(2π)3
h̄ck a†~k

a~k (11.14)

12 Dipole Interaction in QFT

From arguments of time reversal [4], we know the dipole interaction term in QFT must look
like

Ldip = −gψ̄γµνγ5ψFµν (12.1)
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Where g is the coupling, Ψ is the spinor of the atom and γµν = 1
4 [γµ, γν ]. Where γµ is

the 4x4 gamma matrices that are representations of the Clifford algebra and γ5 is a specific
combination of these. In this report I will use the chiral representation:

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
1 0
0 −1

)
, (12.2)

Where every entry is a 2x2 matrix and σi are the Pauli matrices.
In (12.1) Fµν = ∂µAν − ∂νAµ is the field strength tensor, where Aµ is 4-potential related to
electromagnetism. The elements of the field strength tensor is related to the electric and
magnetic fields by:

Ei = cF0i, Bi = −1

2
εijkF

jk (12.3)

This is very convenient for our case, where the atoms do not interact with the magnetic
field. This leads all the summations where µ = i & ν = j are 0. The remaining summations
are computed by finding the Ψγ0iγ5Ψ matrix elements and then letting this act on Fi0.
Using that the dual spinor is given by Ψ̄ = Ψ†γ0, we get

ψ̄(k′)γ0γiγ5ψ(k) = ψ†(k′)

(
0 1
1 0

)2(
0 σi

−σi 0

)(
1 0
0 −1

)
ψ(k) (12.4)

= ψ†(k′)

(
0 −σi
σi 0

)
ψ(k) (12.5)

Where the chiral representation of the gamma matrices have been used. In this, the spinors
can be written as

ψ =
1

2
√

(P ′0 +m)(P 0 +m)

(
P ′ · σ +m
P ′ · σ̄ +m

)
Er (12.6)

Where σ̄µ = (1,−σi) and Er is a two component spinor such that Er†Er = 1. Inserting this
and using (12.6), we get:

barΨ(k′)γ0γiγ5Ψ(k) =
1

2M
Er†[(P ′ · σ +m, P ′ · σ̄ +m)

(
σiP ′ · σ +m
σiP ′ · σ̄ +m)

)
]Es (12.7)

=
1

2M
Er†[ (12.8)

−(P ′0 +m)(P 0 +m)σi + (P ′0 +m)σiPjσ
j + P ′aσ

aσi(−P 0 −m+ Pjσ
j) (12.9)

−(P ′0 +m)(P 0 +m)σi − (P ′0 +m)σiPjσ
j − P ′aσaσi(−P 0 −m− Pjσj) (12.10)

]Es (12.11)
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After removing terms that cancel we get:

1

2M
Er†[−2M2σi + 2P ′aPjσ

aσiσj ]Es (12.12)

= MEr†[−σi +
P ′iPJ + P ′jPi

M2
σj + iεaij

P ′aPj
M2

−
P ′jPj

M2
σi]Es (12.13)

All terms with fractions of the type P ′jPi/M
2 vanish in the non-relativistic limit, since

adding the appropriate orders of c yields:

P ′jPi

M2
=

P ′jPic
2

(P ′0c+mc2)(P 0c+mc2)
(12.14)

=
m2v′jvic

2

c4[(m2 + v′2/c2)0.5 +m)((m2 + v2/c2)0.5 +m]
≈
v′jvi

4c2
(12.15)

Which is very small in the non-relativistic limit. Cancelling the vanishing terms and using
M ≈ 2m yields:

Ψ̄(k′)γ0γiγ5Ψ(k) ≈ −2mEr†σiEs (12.16)

Using {γ0, γi} = 0 we know that Ψ̄γ0iγ5Ψ = −Ψ̄γi0γ5Ψ. With no magnetic interaction,
and dividing by 4 from the definition of γµν this yields:

Hdip = gΨ̄γµνγ5ΨFµν =
g

4
(Ψ̄γ0iγ5ΨF0i + Ψ̄γi0γ5ΨFi0) (12.17)

≈ −1

2
gm(Er†σiEsEi − Er†σiEs(−Ei)) (12.18)

= −gmEr†σiEsEi (12.19)

Since spin and electric dipole moment are both rank one tensors, the Wigner-Eckart theorem
[1] says that their expectation values are related by a scalar coefficient. Including this
coefficient together with m in the coupling constant s.t. g = de

m , we have reproduced the
usual quantum mechanical dipole operator:

Hdip = −Er†d̂i EsEi (12.20)

Where d̂i is the dipole operator along the i’th direction.
No assumption were made as to the form of the spinors Ψ representing the atom, and thus
the derivation is a generic derivation of the electric dipole interaction.

13 Deriving Field Theory Hamiltonian for EIT-Setup

The ladder system is commonly used for Rydberg polariton setups [2] [7]. This is shown in
figure 11
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13.1 Atom Fields

When writing a field theory for particles, one needs to know where the particles are scalar
bosons S = 0, fermions S = n/2 or non-scalar bosons S = n. Selection rules of quantum
mechanics then assures that a bosonic atom cannot change into a fermionic atom. In the
following, the atoms are treated as fermions, since these need the most complete structural
description; spinors.
A convenient way of describing the atoms in the ladder system is:

Ψ =

ψgψ−
ψ+

 (13.1)

Where each of the components of Ψ are of the form (12.7). ψ+ & ψ− are related to the old
states by a rotation:

|+〉 = α |e〉+ β∗ |r〉 (13.2)

|−〉 = β |e〉 − α∗ |r〉 (13.3)

All these states are Fock states. The ket |a〉 represents all the atoms at the position of |a〉.
All the atoms but one are always in the ground state. An excited state then corresponds
to one of these atoms being excited.
These states are the new eigenstates of the system if only the |e〉−|r〉 coupling Ω is present.
These are often called dressed states.

13.2 Dipole Interaction and Effective Transition Fields

Now only the weak coupling g between |g〉−|e〉 needs to be dealt with.Only the combinations
of ψ that have non-zero transition dipole moment contribute:

Hdip = Ψ̄σµνγ5ΨFµν (13.4)

≈ g[αψ̄+γ
i0γ5ψg + βψ̄−γ

i0γ5ψe + αψ̄gγ
i0γ5ψ+ + βψ̄eγ

i0γ5ψ−]Ei (13.5)

Knowing this, the original Lagrangian can be written compactly using (13.1), using the
matrix G that project the relevant fields on each other.

Ldip = −gGΨ̄γµνγ5ΨFµν , G =

0 α β
α 0 0
β 0 0

 (13.6)

Motivated by this, two new effective fields that describe transitions from |g〉 to |+〉 and |−〉
are defined:

b† = ψ̄+γ
i0γ5ψg (13.7)

c† = ψ̄−γ
i0γ5ψg (13.8)
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Showing that b then corresponds to the transition from |+〉 → |g〉

b = (b†)† = (ψ̄+γ
0iγ5ψg)

† (13.9)

= ψ†g
(
γ0γ0iγ5

)†
ψ+ (13.10)

= ψ†gγ
5γ0iγ0ψ+ (13.11)

= ψ†gγ
0γ0iγ5ψ+ (13.12)

= ψ̄gγ
0iγ5ψ+ (13.13)

To get (13.12), both γ0 and γ5 were anti-commuted through twice. Now (13.5) can be
written as

Hdip = g(αb+ αb† + βc+ βc†)E (13.14)

13.3 Free Theory for Atoms as Transition Fields

The free Lagrangian for the atom fields would have a kinetic term and a mass term:

LA = Ψiγ
µDµΨi +MijΨ̄iΨj (13.15)

We assume that the cold atoms are stationary and discard the kinetic term. To write the
mass term using the earlier motivated operators b† and c†, we show that b†b ≈ ψ†+ψ+:

b†b = ψ̄+γ
0iγ5ψgψ̄gγ

0iγ5ψ+ (13.16)

= ψ̄+γ
0iγ5

(
1− ψ†gψg)

)
γ0γ0iγ5ψ+ (13.17)

Where we have used the fermionic anti-commutation relation {ψg(x), ψ†g(y)} = δ(x − y)
and these b & b† are on the same point in spacetime. We now use the approximation that
almost all the n atoms at position x are in the ground state.

≈ ψ̄+γ
0iγ5 (1− n(x)) γ0γ0iγ5ψ+ (13.18)

≈ n(x)ψ̄+γ
0iγ5γ0γ0iγ5ψ+ (13.19)

= −n(x)ψ̄+γ
0γ0iγ0iγ5γ5ψ+ (13.20)

= −n(x)

4
ψ̄+γ

0ψ+ (13.21)

= −n(x)

4
ψ†+ψ+ (13.22)

It is now used that the dressed states under the influence of the strong control field Ω
have the energies HA+Control = ∆+ψ

†
+ψ+ + ∆−ψ

†
−ψ− with ∆+ = (δ +

√
δ2 + 4Ω2)/2 &

∆− = (δ−
√
δ2 + 4Ω2)/2 [5]. Using (13.22), this can be written in terms of b′s and c′s. We
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redefine the transition operators to include 1/
√
n(x) we get the total Hamiltonian of the

EIT ladder setup:

H0 =

a†b†
c†

T  ck gα
√
n gβ

√
n

gα
√
n −∆+ 0

gβ
√
n 0 −∆−

ab
c

 (13.23)

Where for the QED creation operators a, a† there is an implicit sum over modes.
Compared to Bienias 2016 [3] this has minuses on the diagonal elements corresponding b†b
& c†c. This is because we assumed the atom fields were fermionic and thus used anticom-
mutation relations in 13.17. For the remainder of this report, I will assume bosonic fields
corresponding to pluses on the diagonal.

14 Rydberg Interaction and Interaction Eigenstates

With an eye on modelling the Rydberg polariton interaction, we recreate a Hamiltonian that
are more closely related to the eigenstates of the bare atom. These will be the interaction
eigenstates of the Rydberg interaction. To describe the Hamiltonian in terms of different
states, two unitary matrices(R−1R = 1) can be inserted on each side of the matrix A in
(13.23):

H0 = Ψ†dressedR
†RAR†RΨdressed = Ψ′†BΨ′ (14.1)

Where Ψ′ = RΨdressed are the new states and B = RAR† is the new quartic Hamilton
matrix. Such a transformation can be done between (13.23) and the following equation
containing the matrix B:

H0 =

a†ψ†s
ψ†r

T ck g 0
g δ Ω
0 Ω 0

 a
ψs
ψr

 (14.2)

Where the transformation matrix R is given by a rotation ”around the electric field opera-
tors”:

R =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , tan(2θ) =
2Ω

δ
(14.3)

Since the Ω and g in (14.2) is the couplings between the bare atoms states |e〉 and |r〉,
the fields must be related to the original states. Thus it is plausible that the Rydberg
interaction could be modelled as an interaction between two ψr fields. This would mean
that the full Hamiltonian including the Rydberg interaction could be written as:

H = H0 + Vrr(x− y)ψ†r(x)ψ†r(y)ψr(x)ψr(y) (14.4)
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15 Mass Eigenstates and the Propagator

Mass-eigenstates are the eigenstates of the quadratic part of the Hamiltonian and are the
physically observable states. To find these, H0 is diagonalized using a unitary transforma-
tion. As H0 is symmetric, we know it is diagonalizable. This time starting from (14.2), the
transformation is described by the matrices U and U †

H0 = Ψ†intU
†UBU †UΨint =

∑
β

εµψ
†
µψµ (15.1)

So the mass eigenstates are given by ψµ =
∑

α U
α
µψα. Where µ runs over −1, 0,+1, where

ψ±1 is interpreted as two bright polaritons and ψ0 is interpreted as a dark polariton [2]. As
the matrix is 3x3, the analytic expression for the eigenvalues and diagonalising matrix are
too lengthy to be very onformative.The diagonalising matrix U is quite complex, and same
for the eigenvalues εµ. In Mathematica the eigenvalues and eigenvectors of B can be found
and thus also εµ and P (Since this is just the normalized eigenvectors of B). The expressions
are very cumbersome, but the values of εu as a function of momentum is shown in 12 for
g = 5δ, Ω = 0.2δ, δ = 0.04, h̄ = c = 1. We note that these reproduce the results in [2].

Figure 12: Dispersion relations for ε+1 (Green), ε0(Orange) and ε−1 (blue)

As a further test, we expand the eigenvalue of the dark polariton in powers of momentum,
to show that we reproduce the expansion in [3].
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ε0(k) = h̄vgk −
h̄2

2m
k +O(k)3 (15.2)

vg =
Ω2

g2 + Ω2
, m =

(g2 + Ω2)3

2c2g2Ω2∆
h̄ (15.3)

Knowing the dispersion relation of the polaritons, the propagator can be computed. In
general, the non-relativistic propagator G is defined as:

ψµ(~x′, t′) = i

∫
d3xG(~x′, t′, ~x, t)ψµ(~x, t) (15.4)

Assuming G is invariant under space and time transformations, G must be a function of
(x− x′) & (t− t′). A Fourier transform of G is performed:

G(x−x′, t−t′) =

∫
d3k dω

(2π)4
ei
~k·( ~x′−x)eiω(t−t′)G(k, ω) (15.5)

Since we are working non-relativistically, we want the propagator to be a Green’s function
of the free Shrödinger equation. For the mass-eigenstates this means:

[ih̄∂t −H0]G(x−x′, t−t′) =

∫
d3k dω

(2π)4
[h̄ω − εµ]ei

~k·( ~x′−x)eiω(t−t′)G(k, ω) (15.6)

?
= δ(x− x′)δ(t− t′) (15.7)

The integral over the two exponentials in (15.6) are exactly these delta functions, so G(k, ω)
must be

G(k, ω) =
1

h̄ω − εµ + iη
(15.8)

Where a small imaginary number iη is added to avoid divergences.This is the propagator
of a particle under the influence of a Shrödinger equation with no potential. The states
that get evolved by this, are the mass eigenstates ie the polaritons. ω was the frequency
from the Fourier transform of time, so this will be the total energy ω. Since the interaction
eigenstates are the Rydberg states, it would be nice to get the propagator for the Rydberg
field operator ψr. This will propagate as a linear combination of the three polaritons.
What this combination looks like, will be determined by the diagonalizing matrix U . Let
us investigate how the Rydberg field with momentum q propagates:

ψµ(z′, t′) =
1

h̄ω − εµ(q) + iη
U(q)sµψs(z, t), No sum over µ (15.9)

Where the propagator has been given in momentum space. The Fourier transform is left for
the Feynman diagrams where it becomes a delta function enforcing momentum conservation
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at vertices.
This is now in the polariton basis. To transform back, we apply the inverse transformation
matrix Ū :

ψs(z
′, t′) =

∑
µ

Ūµs (q)
1

h̄ω − εµ(q) + iη
U(q)sµψs(z, t) (15.10)

The propagator of ψs is now identified

χq =
∑

µ∈0,±1

Uµs (q)U(q)sµ
h̄ω − εµ(q) + iη

(15.11)

16 Scattering Processes

16.1 Introducing Feynman Diagrams and Scattering amplitudes

In field theory, all processes are computed as scattering processes. A graphical way to
keep track of different interactions are the Feynman diagram. In this report, straight lines
denote propagators of the mass eigenstates ψµ, µ ∈ −1, 0,+1. Squiggly lines will denote
interactions between interaction eigenstates ψr.

Figure 13: Example of Feynman diagrams. Squiggly lines represent interactions and straight
lines represent propagators.

Figure 13 shows two examples of Feynman diagrams. The left is a first order interaction
with one order of V (z − z′) and no propagators.The 4 tilted ”legs” represent the in- and
outgoing particles. In momentum space these have initial momentum P1 & P2 and final
momentum P ′1 & P ′2. V (z−z′) represents the interaction. When transformed to momentum
space Vk−k′ is dependent on the change in relative momentum between the two particles
k = P1 − P2, k′ = P ′1 − P ′2.
The right is a loop diagram with two orders of V (z − z′) and two orders of propagators
G(k, ω). It is called a loop diagram because it forms a loop. The propagators and V is
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not fixed by the initial and final momenta. There ”runs” a free momentum in the loop,
such that all values of momenta are allowed for the different lines, as long as momentum is
always conserved at each vertex.
In field theory, the quantity to compute for a scattering process is the quantum amplitude.
For a scattering process |P1, P2〉 → |P ′1, P ′2〉 is given by:〈

P ′1, P
′
2

∣∣U(t, t0) |P1, P2〉 (16.1)

Where U(t, t0) is the time evolution operator given by Dyson’s formula [13]:

U(t, t0) = Texp

(
−i
∫ t

t0

dt′H(t′)

)
(16.2)

Where T means time ordered and H is the Hamiltonian of the system. When computing
this, the exponential is expanded in orders of H. This motivates the categorising of Feynman
diagrams into orders of interaction, since this corresponds to the terms in the expansion of
exp(H): 〈

P ′1, P
′
2

∣∣U(t, t0) |P1, P2〉 =
〈
P ′1, P

′
2

∣∣ (1 +H + 1
2H

2 + ...
)
|P1, P2〉 (16.3)

The zeroth order term corresponds to nothing happening. It will only contribute if the
initial and final states are equal. Therefore it is often omitted from computations. The
non-trivial part of the expansion is called the T -matrix. The first term T (1) corresponds to
left diagram in 13 and the second term T (2) corresponds to the right diagram. Feynman
diagrams represent equations. Written out, the two diagrams in figure 13 read:

T
(1)
kk′ = Vk−k′ , T

(2)
kk′ = T

(1)
kk′ +

∫
dq

2π
G(q, ω)V (q + P1)G(q + P1 + P2, ω)V (q + P1) (16.4)

Where the labelling of the momentum of inner lines is shown in figure 14. The initial bra
and ket have been omitted for shorter notation. The Feynman diagrams really represents

〈P ′1, P ′2|T
(i)
kk′ |P1, P2〉.

Figure 14: Labelling of inner momentum in loop diagram
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16.2 A Single Polariton in an External Potential

A simple case of polariton interaction is the lone polariton experiencing a potential from eg
a stationary Rydberg excitation. In this case the interaction Hamiltonian is instead:

Hext =

∫
dzψr(z)

†V (z)ψr(z) (16.5)

This gives rise to the following types of Feynman diagrams:

Figure 15: Feynman diagrams for polariton in external potential.(With external legs)

In figure 15 the loose squiggly lines represent the interaction of the polariton with the
external potential. In momentum space the first three terms are:

T
(1)
kk′ = V (k′ − k) (16.6)

T
(2)
kk′ = V (k′ − k) +

∫
dq

2π
V (q)χk+qV (k′ − k − q) (16.7)

T
(3)
kk′ = V (k′ − k) +

∫
dq

2π
V (q)χk+qV (k′ − k − q)

+

∫
dq

2π
V (q)χk+q

∫
dt

2π
V (t)χk+q+tV (k′ − k − q) (16.8)

This comes in a nice recursive form, where each expansion order can be defined in terms of
the last:

Tn+1
kk′ = V (k′ + k) +

∫
dq

2π
V (q)χk+qT

n
qk′ (16.9)

Since this is an infinite sum, we can take the limit n → ∞. In this limit the equation
becomes:

Tkk′ = V (k − k′) +

∫
dq

2π
V (q)χk+qTqk′ (16.10)

Figure 16 shows this expression diagrammatically. This euqation can be solved for Tkk′ [3],
but this is beyond the scope of this project.
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Figure 16: Recursive definition of the T-matrix for external potential. (Without external
legs)

16.3 Two Body Interaction

The interaction introduced earlier between two polaritons gives rise to diagrams much like
the one described in section 16.2. The interaction term was

Hrr = Vrr(x− y)ψr(z1) † ψr(z2)ψr(z1)ψr(z2) (16.11)

The diagrams up to second order is shown in figure 17 together with the diagram describ-
ing the recursive formula for the complete T-matrix. k and k′ now describe the relative
momentum k = P1 − P2, k′ = P ′1 − P ′2.

(a) First 2 terms

(b) Recursive definition

Figure 17: T-matrix for polariton-polariton interaction
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The equation corresponding to this recursive definition will be a Bethe-Salpeter equation:

Tkk′ = V (k−k) +

∫
dq

2π
χ(k′−q−P ′1, ω)V (k′−q−P ′1+P ′1)χ(k′−q−P ′1+P1+P2, ω)Tqk′

(16.12)

Since V is just a number it can be moved to the left of the propagators. Bienias et al
2014 [2] then writes the propagation of the two polaritons as the pair propagator:

χq(K,ω) =
Ūαs (p)U sα(p)Ūβs (p′)U sβ(p′)

h̄ω − εα(p)− εβ(p′) + iη
(16.13)

where p = K/2 + q and p′ = K/2− q and K is the total momentum K = P1 +P2 = P ′1 +P ′2.
Bienias further rewrites this to the form(see [2] for description of new parameter):

χq = χ̄+
α

h̄ω̄ − h̄2q2/m+ iη
+

αB

h̄ω̄B − h̄2q2/m+ iη
(16.14)

The first term can be dealt with by including it in the interaction potential s.t.

V eff (r) =
V (r)

1− χ̄(ω)V (r)
(16.15)

Where r = z1 − z2 is the relative position. The second term reduces to a propagator of
an combined effective particle. The third term describes resonant scattering, where the
incoming polaritons exit as different types. Eg the conversion of two dark polaritons into

an upper and lower bright polariton [3]. In the case
√
|ω̄α2

Bω̄Bα
2| � 1 the third term can

be ignored and the equation for T becomes:

Tkk′ = V eff
k−k′

α

hω̄ − h̄2q2/m
Tqk′ (16.16)

This describes a single particle in an effective potential V eff with mass m(see (16.2)).

m = h̄
(g2 + Ω2)3

2c2g2∆Ω
(16.17)

The Shrödinger equation for this particle then captures dynamics of the system:

h̄ω̄ψ(r) =

[
− h̄

2

m
∂r + αV eff (r)

]
ψ(r) (16.18)
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17 Conclusion

A review of standard EIT in a λ-setup was perfomed and important techniques in AMO-
physics were introduced. This includes the modelling of atoms and electric fields, the
rotating frame and rotating wave approximation, density operator, susceptibility of coupling
fields, the Master equation. Then a symbolic stationary solution of the EIT-setup was found,
and a numerical solution of the time evolution was computed.
In the second part of the project, some basic concepts in quantumn field theory was used in
the modelling of the electromagnetic fields by QED. A possible term for a dipole-interaction
between the atoms and electric field was presented. It was shown that this term reduces to
the standard dipole interaction of quantum mechanics in the non-relativistic limit. Then a
Hamiltonian of the ladder EIT setup was derived in terms of field operators and transformed
to the effective transition field operators. Rydberg polaritons was found to be the mass-
eigenstates of the ladder EIT setup. The interaction of Rydberg polaritons with an external
field was modelled by a quadratic interaction term. The corresponding Feynman diagrams
and the resulting equation for the T-matrix was presented. The interaction of two Rydberg
polaritons was modelled by a quartic interaction term and the resulting Feynman diagrams
and T-matrix were presented. The resulting system in an appropriate limit were a single
particle propagating through an effective potential.
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states for strongly interacting rydberg polaritons, Physical Review A 90 (2014), no. 5,
053804.

[3] Przemyslaw Bienias, Few-body quantum physics with strongly interacting rydberg polari-
tons, The European Physical Journal Special Topics 225 (2016), no. 15-16, 2957–2976.

[4] JF Donoghue, E Golowich, and BR Holstein, Dynamics of the standard model, (1992).

[5] Michael Fleischhauer, Atac Imamoglu, and Jonathan P Marangos, Electromagnetically
induced transparency: Optics in coherent media, Reviews of modern physics 77 (2005),
no. 2, 633.

[6] Alexey V Gorshkov, Johannes Otterbach, Michael Fleischhauer, Thomas Pohl, and
Mikhail D Lukin, Photon-photon interactions via rydberg blockade, Physical review
letters 107 (2011), no. 13, 133602.

[7] MJ Gullans, JD Thompson, Y Wang, Q-Y Liang, V Vuletić, Mikhail D Lukin, and
Alexey V Gorshkov, Effective field theory for rydberg polaritons, Physical review letters
117 (2016), no. 11, 113601.

[8] Chien Liu, Zachary Dutton, Cyrus H Behroozi, and Lene Vestergaard Hau, Observation
of coherent optical information storage in an atomic medium using halted light pulses,
Nature 409 (2001), no. 6819, 490–493.

[9] David Petrosyan, Johannes Otterbach, and Michael Fleischhauer, Electromagnetically
induced transparency with rydberg atoms, Phys. Rev. Lett. 107 (2011), 213601.

[10] Jonathan D Pritchard, D Maxwell, Alexandre Gauguet, Kevin J Weatherill, MPA
Jones, and Charles S Adams, Cooperative atom-light interaction in a blockaded rydberg
ensemble, Physical review letters 105 (2010), no. 19, 193603.

[11] M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with rydberg atoms,
Rev. Mod. Phys. 82 (2010), 2313–2363.

[12] Daniel A. Steck, Quantum and Atom Optics, Available online at
http://steck.us/teaching (revision 0.8.3, 25 May 2012).

[13] David Tong, Quantum field theory, Available online at
http://www.damtp.cam.ac.uk/user/tong/qft.html (retrieved 12 June 2017).

Page 33




